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Abstract The univariate Kolmogorov-Smirnov (KS) test is a non–parametric statistical test designed
to assess whether two samples come from the same underlying distribution. The versatility of the KS
test has made it a cornerstone of statistical analysis across the scientific disciplines. However, the test
proposed by Kolmogorov and Smirnov does not naturally extend to multidimensional distributions.
Here, we present the fasano.franceschini.test package, an R implementation of the 2-D KS two–sample
test (Fasano and Franceschini, 1987) and provide multiple use cases across the scientific disciplines.
The fasano.franceschini.test package provides three improvements over the current 2-D KS test on
the Comprehensive R Archive Network (CRAN): (i) the Fasano and Franceschini test has been shown
to run in O(n2) versus the Peacock implementation which runs in O(n3); (ii) the package implements
a procedure for handling ties; and (iii) the package implements a parallelized permutation procedure
for improved significance testing. Ultimately, the fasano.franceschini.test package presents a robust
statistical test for analyzing random samples defined in 2-dimensions.

Introduction

The Kolmogorov–Smirnov (KS) is a non–parametric, univariate statistical test designed to assess
whether a set of data is consistent with a given probability distribution (or, in the two-sample case,
whether the two samples come from the same underlying distribution). First derived by Kolmogorov
and Smirnov in a series of papers (Kolmogorov, 1933a,b; Smirnov, 1936, 1937, 1939, 1944, 1948), the
one-sample KS test defines the distribution of the quantity DKS, the maximal absolute difference
between the empirical cumulative distribution function (CDF) of a set of values and a reference
probability distribution. Kolmogorov and Smirnov’s key insight was proving the distribution of
DKS was independent of the CDFs being tested. Thus, the test can effectively be used to compare
any univariate empirical data distribution to any continuous univariate reference distribution. The
two-sample KS test could further be used to compare any two univariate empirical data distributions
against each other to determine if they are drawn from the same underlying univariate distribution.

The nonparametric versatility of the univariate KS test has made it a cornerstone of statistical
analysis and is commonly used across the scientific disciplines (Atasoy et al., 2017; Chiang et al., 2018;
Hahne et al., 2018; Hargreaves et al., 2020; Wong and Collins, 2020; Kaczanowska et al., 2021). However,
the KS test as proposed by Kolmogorov and Smirnov does not naturally extend to distributions in
more than one dimension. Fortunately, a solution to the dimensionality issue was articulated by
Peacock (Peacock, 1983) and later extended by Fasano and Franceschini (Fasano and Franceschini,
1987).

Currently, only the Peacock implementation of the 2-D two-sample KS test is available in R (R Core
Team, 2016) with the Peacock.test package via the peacock2 function, but this has been shown to be
markedly slower than the Fasano and Franceschini algorithm (Lopes et al., 2007). A C implementation
of the Fasano–Franceschini test is available in Press et al. (2007); however, arguments have been made
to the validity of the implementation of the test not being distribution-free (Babu and Feigelson, 2006).
Furthermore, in the C implementation, statistical testing is based on a fit to Monte Carlo simulation
that is only valid for significance levels α / 0.20.

Here we present the fasano.franceschini.test package as an R implementation of the 2-D
two-sample KS test described by Fasano and Franceschini (Fasano and Franceschini, 1987). The
fasano.franceschini.test package provides two improvements over the current 2-D KS test available
on the Comprehensive R Archive Network (CRAN): (i) the Fasano and Franceschini test has been
shown to run in O(n2) versus the Peacock implementation which runs in O(n3); and (ii) the package
implements a permutation procedure for improved significance testing and mitigates the limitations
of the test brought noted by Babu and Feigelson (2006).
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Models and software

1-D Kolmogorov–Smirnov Test

The Kolmogorov–Smirnov (KS) test is a non–parametric method for determining whether a sample is
consistent with a given probability distribution (Stephens, 1992). In one dimension, the Kolmogorov-
Smirnov statistic (DKS) is the defined by the maximum absolute difference between the cumulative
density functions of the data and model (one–sample), or between the two data sets (two–sample), as
illustrated in Figure 1.

Figure 1: LEFT: Probability density function (PDF) of two normal distributions: orange sample 1,
N (µ = 0, σ2 = 1); blue sample 2, N (µ = 5, σ2 = 1). RIGHT: Cumulative density functions (CDF)
of the two PDFs; the black dotted line represents the maximal absolute difference between the CDFs
(DKS).

In the large–sample limit (n ≥ 80), it can be shown (Kendall and Stuart, 1946) that DKS converges
in distribution to

DKS
d→ Φ(λ) = 2

∞

∑
k=1
−1k−1e−2k2λ2

. (1)

In the one-sample case with a sample of size n, the p value is given by

P(D > observed) = Φ(D
√

n) ; (2)

in the two-sample case, the p value is given by

P(D > observed) = Φ
(

D
√

n1n2
n1 + n2

)
. (3)

where n1 and n2 are the number of observations in the first and second samples respectively.

Higher dimensional variations: Peacock Test (1983) and Fasano–Franceschini Test (1987)

Extending the above to two or higher dimension is complicated by the fact that CDFs are not well-
defined in more than one dimension. In 2-D, there are 4 ways (3 independent) of defining the
cumulative distribution, since the direction in which we order the x and y points is arbitrary (Figure 2);
more generally, in k-dimensional space there are 2k − 1 independent ways of defining the cumulative
distribution function (Peacock, 1983).

Peacock (1983) solved the higher dimensionality issue by defining the 2-D test statistic as the largest
difference between the empirical and theoretical cumulative distributions, after taking all possible
ordering combinations into account. Peacock’s test thus computes the total probability—i.e. fraction
of data—in each of the four quadrants around all possible tuples in the data. For example, for n
points in a two-dimensional space, the empirical cumulative distribution functions is calculated in
the 4n2 quadrants of the plane defined by all pairs (Xi, Yj) : i, j ∈ [1, n], where Xi and Yj are any
observed value of x and y (whether or not they are observed as a pair). There are n2 such pairs, each
of which can define four quadrants in the 2-D plane; by ranging over all possible pairs of data points
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Figure 2: Four ways (3 independent) of defining the cumulative distribution for a given point in 2-D.
Here, the orange point (X, Y) is chosen as the origin; the density of observations may be integrated as
P(x < X, y > Y) (A); P(x < X ∪ y < Y) (B); P(x < X, y < Y) (C); P(x > X, y < Y) (D).
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and quadrants, the 2-dimensional D statistic is defined by the maximal difference of the integrated
probabilities between samples.

The variation defined by Fasano and Franceschini (1987) was to only consider quadrants centered
on each observed (x, y) pair to compute the cumulative distribution functions. That is, rather than
looking over all n2 points (Xi, Yj) : i, j ∈ [1, n], Fasano and Franceschini only use the observed n points
(Xi, Yi) : i ∈ [1, n]. Thus for any given n points in a two-dimensional space, those n points define 4n
(rather than 4n2) quadrants. The procedure is illustrated in Figure 3. The algorithm loops through
each point in one sample in turn to define the origin of 4 quadrants (grey dotted lines in Figure 3). The
fraction of points in each sample is computed in each quadrant, and the quadrant with the maximal
difference is designated with the current maximum for the specified origin. By iterating over all data
points and quadrants, the test statistic DFF,1 is defined by the maximal difference of the integrated
probabilities between samples in any quadrant for any origin from the first sample. In Figure 3, using
the orange point as the origin, the maximal difference is DFF,1 = 0.52.

Figure 3: Illustration of the Fasano–Franceschini algorithmic search for the maximal difference (DFF,1)
between sample 2-D eCDFs. Looping through each point in the sampled data to define a unique
origin (grey dotted line), the fraction of orange and blue points in each quadrants are computed (plot
corners). For each origin, the quadrant which maximizes the absolute difference in the integrated
probabilities is indicated. The origin which maximizes the overall absolute difference in the integrated
probabilities between samples is highlighted by the orange box.

This process is repeated using the points from other sample as the origins to compute the maximal
DFF,2 with origins from the second sample. DFF,1 and DFF,2 are then averaged to compute the overall
DFF for hypothesis testing, DFF = (DFF,1 + DFF,2)/2.

It may be that some points are tied with the X and/or Y coordinates of the origin, creating an
ambiguity when computing the fraction of points in each quadrant. Since the test attempts to define
the maximal difference of the cumulative probabilities, a natural solution would be to treat a point
that is tied with the current X and/or Y coordinates of the origin as equally likely to have been drawn
from any of the tied quadrants. Hence, any data point sharing the same X or Y coordinate as the origin
is evenly distributed across the tied quadrants, with each of the two quadrants receiving half a count.
Any data point sharing the both the same X and Y coordinates as the current origin (including the
origin itself) is evenly distributed across all quadrants, with all four quadrants receiving a quarter
count.

Null distribution of DFF

Using Monte Carlo simulation, Fasano and Franceschini created a look-up table of critical values of
DFF as a function of DFF, the sample size, and the coefficient of correlation r. Press et al. (2007) later
defined an approximate fit to the lookup table as follows. For a single sample of size n,

P(dFF > DFF) = Φ

(
DFF
√

n
1 +
√

1− r2(0.25− 0.75/
√

n)

)
. (4)
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where Φ(·) is as defined in Eq 1. The two sample case uses the same formula as above, but with the
slight variation where

n =
n1n2

n1 + n2
. (5)

In both cases, r is defined in the usual way as

r = ∑i(Xi − X̄)(Yi − Ȳ)√
∑i(Xi − X̄)2

√
∑i(Yi − Ȳ)2

. (6)

Power of the Peacock Test (1983) and Fasano–Franceschini Test (1987)

A complete treatmentent of the power of both the Peacock and Fasano–Franceschini tests can be found
in the primary literature (Peacock, 1983; Fasano and Franceschini, 1987) and subsequent benchmarking
paper (Lopes et al., 2007). In short, results for uncorrelated distributions demonstrated that there
is no difference between the power of the two tests. When the correlation coefficient of the model
distributions approach unity, the power of the Fasano-Francheschini test is slightly higher (Fasano and
Franceschini, 1987). These findings were corroborated by Lopes et al. (2007), who benchmarked the
Peacock and Fasano-Francheschini tests. Benchmarking data was comprised of samples containing
varying number of points drawn from the same or different underlying distributions. Both methods
demonstrated comparable acceptance and rejection metrics, as well high stability (low standard error
in the significance calculation) across multiple runs (Lopes et al., 2007).

Illustrations

Fasano–Franceschini test usage

In their paper, Fasano and Franceschini use Monte Carlo simulation to approximate the distribution
of DFF as a function of the sample size n and the coefficient of correlation r. Notably, unlike the 1-D
KS test, the distribution of DFF is not completely independent of the shape of the 2-D distribution of
the underlying data, but depends on the correlations between the variables. In the case where the
variables X and Y are perfectly correlated (r = 1), the 2-D distribution lies along a single line and thus
the 1-D KS test could be used; at the other extreme were X and Y are perfectly uncorrelated (r = 0),
the 2-D distribution is independent in the X and Y directions and one could apply the 1-D KS test on
the marginal distributions. Results from Monte Carlo simulation support these expectations, showing
that the distribution of D is nearly identical for varying distributions with the same correlation
coefficient (Fasano and Franceschini, 1987). The approximation by Press et al. (2007) (Eq 4–5) can be
used to test the significance levels for the 2-D K-S test using the following code:

> #set seed for reproducible example
> set.seed(123)
>
> #create 2-D samples with the same underlying distributions
> sample1Data <- data.frame(
> x = rnorm(n = 100, mean = 0, sd = 1),
> y = rnorm(n = 100, mean = 0, sd = 1)
> )
> sample2Data <- data.frame(
> x = rnorm(n = 100, mean = 0, sd = 1),
> y = rnorm(n = 100, mean = 0, sd = 1)
> )
> fasano.franceschini.test(S1 = sample1Data,
> S2 = sample2Data)

Fasano-Francheschini Test

data: sample1Data and sample2Data
D-stat = 0.105, p-value = 0.7924
sample estimates:
dff,1 dff,2
0.1075 0.1025
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Permutation version of the Fasano–Franceschini test

It has been noted that the approximation from Press et al. (2007) is only accurate when n & 20 and
the p-value is less than (more significant than) ∼ 0.2 (Babu and Feigelson, 2006). While this still
allows a simple rejection decision to be made at any α ≤ 0.2, it is sometimes useful to quantify large
p more exactly (such as if one was to do a cross-study concordance analysis comparing p values
between studies as in Ness-Cohn et al. (2020)), and to apply it to smaller datasets. To address these
limitations, one can empirically compute the significance levels for the particular multidimensional
statistic directly from the particular data set under study. As Fasano and Franceschini’s paper was
originally released in 1987, this approach was unfeasible at scale. Today, modern computers can
rapidly compute a permuted null distribution of DFF from the data to test significance.

In the permutation test implementation of fasano.franceschini.test, the sample labels are randomly
permuted to generate two 2-dimensional data sets with new sample labels nPermute times. The
frequency count by quadrant is performed for each permuted resampling as described above to
compute the DFF. The observed DFF is then compared to the distribution of permuted DFF to
compute a p value. The permutation version of the Fasano–Franceschini test can be run as follows
(see fasano.franceschini.test for further source code details and implementation).

> #set seed for reproducible example
> set.seed(123)
>
> #create 2-D samples with the same underlying distributions
> sample1Data <- data.frame(
> x = rnorm(n = 100, mean = 0, sd = 1),
> y = rnorm(n = 100, mean = 0, sd = 1)
> )
> sample2Data <- data.frame(
> x = rnorm(n = 100, mean = 0, sd = 1),
> y = rnorm(n = 100, mean = 0, sd = 1)
> )
>
> fasano.franceschini.test(S1 = sample1Data,
> S2 = sample2Data,
> nPermute = 1000,
> cores = 1)

Fasano-Francheschini Test

data: sample1Data and sample2Data
D-stat = 0.14, p-value = 0.6733
sample estimates:
dff,1 dff,2
0.1325 0.1475

To improve run time, one may adjust the cores parameter; see the R parallel package and the
mclapply function for further details. [Note that, due to limitations of parallel, the parallelized
permutation procedure only works on *nix operating systems (including MacOS, Linux, Unix, and
BSD), and not Windows. Parallelization is generally only necessary when working with large values of
N and/or nPermute; in this case, we recommend using parallelization on a linux-based HPC cluster.]

Real world applications

Much like the 1-D KS test, the 2-D Fasano-Franceschini test is widely applicable across the scientific
disciplines. Figure 4 shows use cases in the three distinct fields of social science, ecology, and cell
biology. In Figure 4A, the Fasano-Franceschini test was used to detect differences in the distribution of
social services within the municipality of Rennes, France (Floch et al., 2018); the Fasano-Franceschini
test detected a significant difference in the distribution of clothing stores in relation to doctors offices,
schools, and pharmacies (Bon f = 6.9e−18; Bon f = 2.7e−10; Bon f = 1.6e−7, respectively). No
statistical difference was seen between the distribution of the latter three social services in comparison
to each other (doctors offices vs. pharmacies, Bon f = 1; schools vs. pharmacies, Bon f = 1; doctors
offices vs. schools, Bon f = 1). Pragmatically, such analysis can help to identify geographic service
disparities and inform future city planning. In Figure 4B, the Fasano-Franceschini test was used
to gain insight on the differences in the distribution of species in an ecosystem. Comparing the
distribution of tree species with the Paracou Forest in French Guiana (Marcon et al., 2015), a statistically
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significant difference is seen between V. Americana and Q. Rosea (p = 3.6e−5). While this was a trivial
analysis of two species, multiple pairwise comparisons of species in a geographic area can identify
ecological variation, providing useful insights for conservation and restoration efforts. In Figure 4C,
the Fasano-Franceschini test was used to detect difference in the localization of distinct cell types with
a tissue. Immunohistochemistry was used to stain tumor-infiltrated lymph node cross section for
T-cells and tumor cell (Set, 2010). A statistically significant difference is seen between the two cell
types (p < 2.2e−16). In the cell biology context, the Fasano-Franceschini test lends itself for uses in
high-throughput histological diagnostic assays; with initial findings support this proof of concept
analysis, as deferentially distributed cell types within a tumor sample are shown to be linked to health
outcomes (Set, 2010).

Beyond these three practical examples, the Fasano-Franchescini test has already been used in a
myriad of other contexts, including the analysis of star clusters in the field of astrophysics (Met, 2002)
and seizure progression in the field of neuroscience (Chen et al., 2012). Ultimately, the nonparametric
multivariate Fasano-Francheschini test proves to be a versatile analysis strategy that transcends
domains and can provide practical insights.

Fasano Franceschini Use in Social Sciences

Doctors
Clothing Stores
Schools
Pharmacies

Fasano Franceschini Use in Ecology

V. Americana
Q. Rosea

Fasano Franceschini Use in Cell Biology

T-Cells
Tumor
other

A B C

Figure 4: Example application settings for the Fasano-Francheschini test. A: Geographic locations of
fours distinct facilities in the municipality of Rennes, France (Floch et al., 2018). B: Geographic location
of tree species in the plot 16 field station of the Paracou Forest, French Guiana (Marcon et al., 2015). C:
Immunohistochemistry stained tumor-infiltrated lymph node cross section, with tumor and T-cells
colored in blue and orange respectively (Set, 2010).

Computational efficiency

To assess the computational efficiency, we benchmarked the package as follows. Using the rbenchmark
package to evaluate runtime, the Fasano–Franceschini test and Peacock test were run under four dif-
ferent samples sizes (n = 10, 100, 1000, 5000), with 10 replicates for each run. The Fasano–Franceschini
test permutation procedure was further evaluated under four different permuted iterations (no per-
mutation, 10, 100, 1000), again using 10 replicates for each run. Reported results represent the average
run time of the 10 replicate benchmarks. All benchmark tests were run on a 2018 macBook Pro Mac
(macOS Catalina) with a 2.7-GHz Quad-Core Intel Core i7 processor and 16 GB of 2133 MHz LPDDR3
memory.

The main distinction between the Peacock and Fasano–Franceschini tests is in computational
efficiency, with Fasano–Franceschini scaling as O(n2) relative to Peacock’s complexity of O(n3) (Lopes
et al., 2007). Our benchmarks also show this advantage, as shown in Figure 5A. While the implemen-
tation of the permutation procedure increases runtime in comparison to the approximate fit from Press
et al. (2007), parallelization of the Fasano–Franceschini test shows a four-fold reduction in run time
when parallelized across 8 cores (Figure 5B).
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Figure 5: Computational efficiency benchmarks. A: Runtime of the Fasano–Franceschini test relative
to the Peacock test at four different sample sizes (n = 10, 100, 1000, 5000). Points represent the average
of 10 benchmark runs. B: Runtime of the Fasano–Franceschini permutation procedure for various
sample sizes (n = 10, 100, 1000, 5000) as a function of the number of cores used. Within each panel,
lines are colored by the number of permuted iterations (no permutation, 10, 100, 1000). Points represent
the average of 10 benchmark runs. Note the logarithmic y-axis in (B).

Summary and discussion

The fasano.franceschini.test package is an R implementation of the 2-D two-sample KS test as defined
by Fasano and Franceschini (Fasano and Franceschini, 1987). It improves upon existing packages
by implementing a fast algorithm and a parallelized permutation procedure for improved statistical
testing. Complete package documentation and source code is available via the Comprehensive
R Archive Network (CRAN) at https://CRAN.R-project.org/ and the package website at https:
//nesscoder.github.io/fasano.franceschini.test/.

Computational details

The results in this paper were obtained using R 4.0.3 with the fasano.franceschini.test 1.0.0 pack-
age. R itself and all package dependencies (methods 4.0.3; parallel 4.0.3) are available from the
Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/.
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